
The Augmented ARTl Neural Network 
Gregory L. Heileman 

Department of Electrical and Computer Engineering, 
University of New Mexico, Albuquerque, NM 87131 USA 

Michael Georgiopoulos 
Department of Electrical Engineering, 

University of Central Florida, Orlando, FL 32816 USA 

Abstract 

A set of nonlinear differential equations that describe the dynamics of the ARTl model are presented, along 
with the motivation for their use. These equations are extensions of those developed in [2]. It is shown how 
these differential equations facilitate the real-time implementation of the ARTl model in its full generality. We 
specifically use the term real-time to refer to a neural network model whose description requires no eziernol 
control features. That is, the dynamics of the model are completely determined by the set of differential equations 
that comprise the model. In this paper we interpret this definition of real-time in its strictest sense. This involves 
the removal of all algorithmic components from an implementation of the ARTl model. 

1 Introduction 
This paper discusses issues involved in the real-time implementation of ARTl architectures [2]. Specif- 
ically, we present a modified version of the ARTl neural network model that facilitates its real-time 
implementation. We denote this model as the augmented ARTl (AARTl) neural network. A detailed 
analysis of the nonlinear differential equations that describe the AARTl model can be found in [3]. 
This analysis demonstrates how network parameters can be chosen in order to  guarantee that the 
AARTl model behaves in the same manner as the ARTl model. 

The term real-time, in this case, is used to  refer to neural network models that require no external 
control (i.e., supervision) of system dynamics [l]. Thus, by definition, a real-time network cannot be 
placed in a learn mode during training and then later switched by some external control activity to a 
performance mode when training is complete. This, for example, is not the case with back-propagation 
learning in perceptron networks-separate externally controlled learning and performance modes do 
exist in this model. 

Nonlinear differential equations are usually used to  describe the dynamics of real-time neural 
network models. These equations must simultaneously describe both the performance dynamics of 
the network, as well as the network’s learning dynamics. The description of neural network models 
in this manner is inherently nonalgorithmic. Typically, however, implementations of the ARTl model 
exhibit algorithmic components. This ranges, on the one extreme, to a popular implementation that 
is completely algorithmic in nature [4]. It is the behavior of the set of differential equations describing 
the ARTl network that is implemented by the algorithm presented in [4]. Although this algorithm 
has proven quite useful, it fails to capture the full generality of the ARTl model. A more subtle 
introduction of algorithmic components occurs in ARTl simulations in which the differential equations 
describing the system dynamics are numerically implemented; however, theresetting of network nodes, 
and the reset mechanism itself are handled through external control. This approach typically involves 
iterating the network equations through a number of time steps, and then stopping to  test if the reset 
mechanism needs to  be employed. 

In this paper, we introduce modifications to  the differential equations describing ARTl that allow 
all of these so-called algorithmic components to  be removed from ARTl implementations. It should 
be emphasized that these modifications allow the ARTl model to  be implemented solely as a set of 
concurrently executing nonlinear differential equations. At the same time, the locality constraints that 
must be observed by a neural network model are preserved. The significance of these modifications, 
from a theoretical point of view, is that they demonstrate the inherent capability of the ARTl net- 
work to operate in a totally unsupervised manner. From a practical point of view, these modifications 
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Figure 1: The architecture of the augmented ARTl neural network model. 
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may facilitate the implementation of ARTl networks. For example, if an engineer wishes to design 
a parallel version of the ARTl network using analog circuitry, then the designer must only consider 
how t o  implement each of the differential equations described here in parallel-not some algorithmic 
description of the model. Therefore, the designer does not have to  create special circuitry for keeping 
track of which nodes have been reset during a particular pattern presentation, or circuitry for perform- 
ing the actual resetting of network nodes-this functionality is embodied in the differential equations 
themselves . 

2 The Augmented ARTl Neural Network 
A number of implementation issues that are not directly addressed in [a] are considered here. These 
include: i) the manner in which the mismatch-mediated reset wave can be generated; ii) the approach 
taken to ensure that an F2 layer node remains inactive, once it is reset, until a new input pattern 
is presented; and iii) A way of automatically driving the activity of every node in the network to 
its resting value of zero whenever an input pattern is removed from the network. The resolution of 
these issues will involve the addition of nodes in the ARTl neural network architecture, and minor 
modifications to  the original ARTl neural network equations presented in [2]. The resulting model is 
termed the AARTl neural network. The major components of the AARTl neural network are shown 
in Figure 1. Section 3 demonstrates that the AARTl network is capable of providing a real-time 
implementation of the ARTl model. 

Let 111 denote the number of input pathways which receive positive inputs when the input pattern 
1 is presented. Also, let 1x1 denote the number of nodes in the F1 layer that are supraliminally 
active. In the ARTl model, each of the 111 input pathways sends an excitatory signal of fixed size P 
to the orienting subsystem, and each of the 1x1 supraliminally active nodes in the F1 layer generates 
an inhibitory signal of fixed size Q that also impinges on the orienting subsystem. Furthermore, the 
orienting subsystem in the ARTl model generates a nonspecific reset wave whenever 

where p is called the vigilance parameter. 
The generation of the reset wave by the orienting subsystem can be accomplished within the 

framework of a real-time implementation through the introduction of a reset node vr whose activity, 



x,, satisfies the following differential equation: 

where U is the unit step function. Note that the activity of the reset node becomes positive whenever 
!$ < p and decays exponentially to  zero whenever I x l  2 p. The output of the reset node, f r ( zT ) ,  
which corresponds to  the non-specific rest wave, satis P es 

1, if z, > 6,; 
(3) 

The introduction of this reset node provides a mechanism for the generation of the reset wave 
required by the ARTl model whenever there is a sufficient mismatch between the input pattern I and 
the activity pattern X across the F1 layer. This resolves issue i. 

One of the properties of the ARTl model is that the reset wave selectively and enduringly inhibits 
active F2 layer nodes until the input pattern is removed. This can be accomplished within the 
framework of a real-time ARTl implementation by augmenting the F2 layer with a set of inhibitory 
nodes. That is, every node v j  in the F2 layer is assigned an inhibitory node 8 j  whose activity, fj, 
satisfies the following differential equation: 

(4) 
d 

62Zfj = -[I - g(1)lPj + g(1)fr(x~)f2(xj)7 
where 

The activity of an F2 layer inhibitory node can only become positive when the following actions are 
satisfied simultaneously: an input pattern is being presented to the network, a reset wave is being 
emitted by the reset node, and the corresponding node in the F2 layer is supraliminally active. Once 
the activity of an F2 layer inhibitory node has become positive, its activity decays exponentially to 
zero only when the input pattern is removed. In conjunction with a modification to  the differential 
equation characterizing the activity of F2 layer nodes, this mechanism will allow the implementation 
of the selective and enduring inhibition of F2 layer nodes after a reset event, and as long as the input 
pattern is present. Specifically, the total inhibitory input to  the node v j  in the F2 layer of the ARTl 
model is modified as follows: 

J; = fz(zlc) + f Z @ j ) ,  (6) 
k#j 

where f2(2j) is the output of the F2 layer inhibitory node 6j. The output of an F2 layer inhibitory 
node obeys 

This resolves issue ii. 
A modification to  the equation describing the total excitatory input to an F2 layer node must also 

be made to  allow the ARTl implementation to  operate in a completely real-time manner. This will 
allow the F1 and F2 layer nodes to be reset to zero whenever an input pattern is removed from the 
network. This can be accomplished in the following manner. When an input pattern is removed from 
the network, it must be followed by the presentation of the null pattern (a pattern of size zero). This 
will rapidly drive the activity of nodes in the F1 and F2 layer to  zero if we modify the J t  quantity in 
the ARTl model as follows: 

J? = f 2 ( 4 g ( I )  t Dz c fi(.i).ij. (8) 
i 
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Conceptually, this presents no problems as it represents an absence of stimuli at the network inputs. 
That is, instead of a constant bombardment of stimuli, the learning system is allowed a brief “rest 
period” between each stimulus presentation. This resolves issue iii. 

3 Computer Simulation 

In this section we demonstrate the capabilities of the real-time AARTl model for both the fast and 
slow learning cases. It is assumed that in a fast learning environment, the input pattern is presented 
long enough for the bottom-up and top-down LTM traces to reach their limiting values; while a slow 
learning environment corresponds to the case where the input pattern is presented long enough for 
the network to choose the correct node to code the input pattern, but not necessarily long enough for 
the bottom-up and top-down LTM traces to reach their limiting values. 

The sample network considered here contains 4 nodes in the F1 layer (q-q), a reset node (U,), 
and 8 nodes in the F2 layer (2)5-2)8, and 65-68). The node differential equations were numerically 
approximated using the fourth order Runge Kutta method with a step size of Three patterns 
were presented to  the network: I1 = 1000, I 2  = 0000, and I3  = 1100. Note that I 2  is the null pattern 
used between presentation of other “interesting” patterns. 

The parameters chosen for the simulation of the sample network in the fast and slow learning cases 
are shown below. These parameters were chosen so as to  satisfy the constraints presented in [3]. 

Ai = 1 B1 = 0.5 C1 = 100 D1 = 1 € 1  = 0.001 61 = 0.01 
A,  = 2 6, = 0.001 6, = 0.02 p = 1 
A2 = 0.3 Bz = 10000 C2 = 10000 Dz = 1.25 €2 = 0.01 62 = 0.01 $2 = 0.0001 
I< = 1 L = 1.01 E ,  = 1 

The LTM traces for these simulations were selected so that initially zji = 1, and 0 < zij < & 
for all i , j .  In addition, the bottom-up LTM traces were chosen so that when If is initially presented, 
05 receives the largest bottom-up input. Furthermore, when I3  is initially presented, 05 receives the 
largest bottom-up input, and 06 receives the next largest bottom-up input. 

The fast learning case is examined first. Pattern I1 is presented to the network at time t = 0 (see 
Figure 2A). After If is presented, the activity of 01 increases from zero to a positive value above 
61-point a in the figure. (Note that points a and b in each of the figures below correspond to the 
thresholds 61 and 6,, respectively.) Node 05 becomes supraliminally active before any other node in 
the F2 layer. At this point, 01 is receiving both bottom-up input, and strong top-down input from 05. 
This causes $1 to  decrease and subsequently reach a limiting value that is above 61. Once 05 becomes 
supraliminally active, it will inhibit the other F2 layer nodes, forcing them to remain subliminally 
active as long as it remains supraliminally active. The activity of 0, in Figure 2A should also be 
noted. Immediately after the presentation of 11, 2, increases due to the mismatch between the output 
activity across the F1 layer, which equals zero, and 1’. Notice that the output activity across the F1 
layer becomes equal to  I1 before 5, exceeds 6,. After the activation of 05, zr continually decreases 
due to the fact that the mismatch at the F1 layer no longer exists. Pattern 1’ is presented until time 
t = 3.0. This allows the bottom-up and top-down LTM traces to  approximately reach their limiting 
values. Hence, 0 5  codes I1. 

At time t = 3.0, I 2  is presented to the network (see Figure 2B). Initially x1 is above 61, but it drops 
to a level below 61 almost instantaneously. This results from 01 receiving only top-down input. After 
the deactivation of 01, 2 1  and 22 stay at a constant level until v5 is deactivated. Once 05 becomes 
subliminally active, 21 and 22 decrease to zero because they are no longer receiving top-down input. 
The activity of starts increasing from a negative value towards zero immediately after 0 5  becomes 
subliminally active. Pattern I 2  is held at  the network input until time t = 3.2. 

At time t = 3.2, I3  is presented (see Figure 3A). After the presentation of 13, 0 5  becomes supral- 
iminally active before any other node in the F2 layer because it receives the largest bottom-up input. 
Once 05 becomes supraliminally active, 21 and 22 begin to  decrease. Notice that 21  remains above 61, 
while 22 decreases to a level below 61. This is a consequence of 01 receiving strong top-down input, 
while 02 receives weak top-down input. When 02 becomes subliminally active, 2, starts increasing 
due to  the mismatch that is now occurring at the F1 layer. When 0, becomes supraliminally active it 
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Figure 2: (A) Node activities during the presentation of pattern 1'. (B) Node activities during the 
presentation of pattern 12. 

generates a reset wave that deactivates 05. After 05 becomes subliminally active, 01 and 02 receive only 
bottom-up input, and their activities increase (see Figure 3B). Node 06 will become supraliminally 
active next since it is the node in the F2 layer that receives the next largest bottom-up input. When 
06 becomes supraliminally active, 21 and 22 begin to  decrease; but they remain above b l .  This is a 
consequence of both 211 and 212 receiving bottom-up input and strong top-down input. Notice also that 
x r  continues to decrease after the deactivation of 05. Hence, 06 codes 13. 

We now consider the slow learning case. First, I1 is presented at time t = 0, and the network 
exhibits the behavior depicted in Figure 2A. However, in this case, soon after 215 wins the competition 
in the F2 layer, I' is removed from the network inputs. Thus, the bottom-up and top-down LTM traces 
are not allowed to  converge to  their limiting values. Pattern I' is presented until time t = 0.1, and 
then I2 is presented. By time t = 0.3, all node activities have converged to  their resting values of zero. 
The behavior of the network during the presentation of I2 is similar to  that shown in Figure 2B. The 
major difference between the fast and slow learning cases demonstrated in these simulations occurs 
when I3  is presented to  the network at time t = 0.3 (see Figure 4). Node 05 receives the largest 
bottom-up input, and it is activated prior to any other F2 layer node. This activation forces 21 and 5 2  
to decrease to  limiting values that remain above 61. In the slow learning case, the fact that 52 remains 
above 61 while I3  is presented is a consequence of not allowing the top-down traces leading to 05 to 
reach their limiting values during the presentation of I1. As a result, when 215 becomes supraliminally 
active, 212, as well as 211, receive bottom-up input and strong top-down input. Thus, since both v1 and 
v2 stay supraliminally active, v5 is not reset. Therefore, v5 codes 13. 

4 Conclusions 
A real-time neural network, AART1, that describes the dynamics of the ARTl model was presented. 
This involved modifying the architecture of the ARTl network through the addition of a reset node 
and a set of inhibitory nodes in the F2 layer. Along with modifications to the differential equations 
describing the F1 and F2 layer nodes, theses changes embody the functionality of the orienting sub- 
system in the ARTl model. In addition, the modifications described here allow the ARTl model to be 
implemented solely using a set of concurrently executing nonlinear differential equations. Thus, the 
AARTl network requires no external control features. Computer simulation results demonstrate the 
efficacy of this network. In [3] we provide an analysis of the AARTl network that proves it is capable 
of behaving in the same manner as the ARTl model. The modified equations presented in Section 2 
have been successfully simulated for a variety of networks using a wide range of parameter values. 
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Figure 3: (A) Node activities leading to a reset during the presentation of pattern 13. (B) Node 
activities after the reset during the presentation of pattern 13. 

Figure 4: Node activities after the presentation of pattern 13, when pattern I1 has not been coded by 
w5 on a previous pattern presentation. 
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