
The Augmented ARTl Neural Network
Gregory L. Heileman

Department of Electrical and Computer Engineering,
University of New Mexico, Albuquerque, NM 87131 USA

Michael Georgiopoulos
Department of Electrical Engineering,

University of Central Florida, Orlando, FL 32816 USA

Abstract

A set of nonlinear differential equations that describe the dynamics of the ARTl model are presented, along
with the motivation for their use. These equations are extensions of those developed in [2]. It is shown how
these differential equations facilitate the real-time implementation of the ARTl model in its full generality. We
specifically use the term real-time to refer to a neural network model whose description requires no eziernol
control features. That is, the dynamics of the model are completely determined by the set of differential equations
that comprise the model. In this paper we interpret this definition of real-time in its strictest sense. This involves
the removal of all algorithmic components from an implementation of the ARTl model.

1 Introduction
This paper discusses issues involved in the real-time implementation of ARTl architectures [2]. Specif-
ically, we present a modified version of the ARTl neural network model that facilitates its real-time
implementation. We denote this model as the augmented ARTl (AARTl) neural network. A detailed
analysis of the nonlinear differential equations that describe the AARTl model can be found in [3].
This analysis demonstrates how network parameters can be chosen in order to guarantee that the
AARTl model behaves in the same manner as the ARTl model.

The term real-time, in this case, is used to refer to neural network models that require no external
control (i.e., supervision) of system dynamics [l]. Thus, by definition, a real-time network cannot be
placed in a learn mode during training and then later switched by some external control activity to a
performance mode when training is complete. This, for example, is not the case with back-propagation
learning in perceptron networks-separate externally controlled learning and performance modes do
exist in this model.

Nonlinear differential equations are usually used to describe the dynamics of real-time neural
network models. These equations must simultaneously describe both the performance dynamics of
the network, as well as the network’s learning dynamics. The description of neural network models
in this manner is inherently nonalgorithmic. Typically, however, implementations of the ARTl model
exhibit algorithmic components. This ranges, on the one extreme, to a popular implementation that
is completely algorithmic in nature [4]. It is the behavior of the set of differential equations describing
the ARTl network that is implemented by the algorithm presented in [4]. Although this algorithm
has proven quite useful, it fails to capture the full generality of the ARTl model. A more subtle
introduction of algorithmic components occurs in ARTl simulations in which the differential equations
describing the system dynamics are numerically implemented; however, theresetting of network nodes,
and the reset mechanism itself are handled through external control. This approach typically involves
iterating the network equations through a number of time steps, and then stopping to test if the reset
mechanism needs to be employed.

In this paper, we introduce modifications to the differential equations describing ARTl that allow
all of these so-called algorithmic components to be removed from ARTl implementations. It should
be emphasized that these modifications allow the ARTl model to be implemented solely as a set of
concurrently executing nonlinear differential equations. At the same time, the locality constraints that
must be observed by a neural network model are preserved. The significance of these modifications,
from a theoretical point of view, is that they demonstrate the inherent capability of the ARTl net-
work to operate in a totally unsupervised manner. From a practical point of view, these modifications

0-7803-0 164- 119 l/OOOO-O467$01 .OOO 199 1 IEEE II-467

F2 layer
I I

LEF$::s

Gain
Control --

LTM Traces

- F1 layer +
0 0 * * ' 0 '
v1 VZ V M Gain

Figure 1: The architecture of the augmented ARTl neural network model.

-
c

4-

may facilitate the implementation of ARTl networks. For example, if an engineer wishes to design
a parallel version of the ARTl network using analog circuitry, then the designer must only consider
how t o implement each of the differential equations described here in parallel-not some algorithmic
description of the model. Therefore, the designer does not have to create special circuitry for keeping
track of which nodes have been reset during a particular pattern presentation, or circuitry for perform-
ing the actual resetting of network nodes-this functionality is embodied in the differential equations
themselves .

2 The Augmented ARTl Neural Network
A number of implementation issues that are not directly addressed in [a] are considered here. These
include: i) the manner in which the mismatch-mediated reset wave can be generated; ii) the approach
taken to ensure that an F2 layer node remains inactive, once it is reset, until a new input pattern
is presented; and iii) A way of automatically driving the activity of every node in the network to
its resting value of zero whenever an input pattern is removed from the network. The resolution of
these issues will involve the addition of nodes in the ARTl neural network architecture, and minor
modifications to the original ARTl neural network equations presented in [2]. The resulting model is
termed the AARTl neural network. The major components of the AARTl neural network are shown
in Figure 1. Section 3 demonstrates that the AARTl network is capable of providing a real-time
implementation of the ARTl model.

Let 111 denote the number of input pathways which receive positive inputs when the input pattern
1 is presented. Also, let 1x1 denote the number of nodes in the F1 layer that are supraliminally
active. In the ARTl model, each of the 111 input pathways sends an excitatory signal of fixed size P
to the orienting subsystem, and each of the 1x1 supraliminally active nodes in the F1 layer generates
an inhibitory signal of fixed size Q that also impinges on the orienting subsystem. Furthermore, the
orienting subsystem in the ARTl model generates a nonspecific reset wave whenever

where p is called the vigilance parameter.
The generation of the reset wave by the orienting subsystem can be accomplished within the

framework of a real-time implementation through the introduction of a reset node vr whose activity,

x,, satisfies the following differential equation:

where U is the unit step function. Note that the activity of the reset node becomes positive whenever
!$ < p and decays exponentially to zero whenever I x l 2 p. The output of the reset node, f r (zT) ,
which corresponds to the non-specific rest wave, satis P es

1, if z, > 6,;
(3)

The introduction of this reset node provides a mechanism for the generation of the reset wave
required by the ARTl model whenever there is a sufficient mismatch between the input pattern I and
the activity pattern X across the F1 layer. This resolves issue i.

One of the properties of the ARTl model is that the reset wave selectively and enduringly inhibits
active F2 layer nodes until the input pattern is removed. This can be accomplished within the
framework of a real-time ARTl implementation by augmenting the F2 layer with a set of inhibitory
nodes. That is, every node v j in the F2 layer is assigned an inhibitory node 8 j whose activity, fj,
satisfies the following differential equation:

(4)
d

62Zfj = -[I - g(1)lPj + g(1)fr(x~)f2(xj)7
where

The activity of an F2 layer inhibitory node can only become positive when the following actions are
satisfied simultaneously: an input pattern is being presented to the network, a reset wave is being
emitted by the reset node, and the corresponding node in the F2 layer is supraliminally active. Once
the activity of an F2 layer inhibitory node has become positive, its activity decays exponentially to
zero only when the input pattern is removed. In conjunction with a modification to the differential
equation characterizing the activity of F2 layer nodes, this mechanism will allow the implementation
of the selective and enduring inhibition of F2 layer nodes after a reset event, and as long as the input
pattern is present. Specifically, the total inhibitory input to the node v j in the F2 layer of the ARTl
model is modified as follows:

J; = fz(zlc) + f Z @ j) , (6)
k#j

where f2(2j) is the output of the F2 layer inhibitory node 6j. The output of an F2 layer inhibitory
node obeys

This resolves issue ii.
A modification to the equation describing the total excitatory input to an F2 layer node must also

be made to allow the ARTl implementation to operate in a completely real-time manner. This will
allow the F1 and F2 layer nodes to be reset to zero whenever an input pattern is removed from the
network. This can be accomplished in the following manner. When an input pattern is removed from
the network, it must be followed by the presentation of the null pattern (a pattern of size zero). This
will rapidly drive the activity of nodes in the F1 and F2 layer to zero if we modify the J t quantity in
the ARTl model as follows:

J? = f 2 (4 g (I) t Dz c fi(.i).ij. (8)
i

11-469

Conceptually, this presents no problems as it represents an absence of stimuli at the network inputs.
That is, instead of a constant bombardment of stimuli, the learning system is allowed a brief “rest
period” between each stimulus presentation. This resolves issue iii.

3 Computer Simulation

In this section we demonstrate the capabilities of the real-time AARTl model for both the fast and
slow learning cases. It is assumed that in a fast learning environment, the input pattern is presented
long enough for the bottom-up and top-down LTM traces to reach their limiting values; while a slow
learning environment corresponds to the case where the input pattern is presented long enough for
the network to choose the correct node to code the input pattern, but not necessarily long enough for
the bottom-up and top-down LTM traces to reach their limiting values.

The sample network considered here contains 4 nodes in the F1 layer (q-q), a reset node (U,),
and 8 nodes in the F2 layer (2)5-2)8, and 65-68). The node differential equations were numerically
approximated using the fourth order Runge Kutta method with a step size of Three patterns
were presented to the network: I1 = 1000, I 2 = 0000, and I3 = 1100. Note that I 2 is the null pattern
used between presentation of other “interesting” patterns.

The parameters chosen for the simulation of the sample network in the fast and slow learning cases
are shown below. These parameters were chosen so as to satisfy the constraints presented in [3].

Ai = 1 B1 = 0.5 C1 = 100 D1 = 1 € 1 = 0.001 61 = 0.01
A, = 2 6, = 0.001 6, = 0.02 p = 1
A2 = 0.3 Bz = 10000 C2 = 10000 Dz = 1.25 €2 = 0.01 62 = 0.01 $2 = 0.0001
I< = 1 L = 1.01 E , = 1

The LTM traces for these simulations were selected so that initially zji = 1, and 0 < zij < &
for all i , j . In addition, the bottom-up LTM traces were chosen so that when If is initially presented,
05 receives the largest bottom-up input. Furthermore, when I3 is initially presented, 05 receives the
largest bottom-up input, and 06 receives the next largest bottom-up input.

The fast learning case is examined first. Pattern I1 is presented to the network at time t = 0 (see
Figure 2A). After If is presented, the activity of 01 increases from zero to a positive value above
61-point a in the figure. (Note that points a and b in each of the figures below correspond to the
thresholds 61 and 6,, respectively.) Node 05 becomes supraliminally active before any other node in
the F2 layer. At this point, 01 is receiving both bottom-up input, and strong top-down input from 05.
This causes $1 to decrease and subsequently reach a limiting value that is above 61. Once 05 becomes
supraliminally active, it will inhibit the other F2 layer nodes, forcing them to remain subliminally
active as long as it remains supraliminally active. The activity of 0, in Figure 2A should also be
noted. Immediately after the presentation of 11, 2, increases due to the mismatch between the output
activity across the F1 layer, which equals zero, and 1’. Notice that the output activity across the F1
layer becomes equal to I1 before 5, exceeds 6,. After the activation of 05, zr continually decreases
due to the fact that the mismatch at the F1 layer no longer exists. Pattern 1’ is presented until time
t = 3.0. This allows the bottom-up and top-down LTM traces to approximately reach their limiting
values. Hence, 0 5 codes I1.

At time t = 3.0, I 2 is presented to the network (see Figure 2B). Initially x1 is above 61, but it drops
to a level below 61 almost instantaneously. This results from 01 receiving only top-down input. After
the deactivation of 01, 2 1 and 22 stay at a constant level until v5 is deactivated. Once 05 becomes
subliminally active, 21 and 22 decrease to zero because they are no longer receiving top-down input.
The activity of starts increasing from a negative value towards zero immediately after 0 5 becomes
subliminally active. Pattern I 2 is held at the network input until time t = 3.2.

At time t = 3.2, I3 is presented (see Figure 3A). After the presentation of 13, 0 5 becomes supral-
iminally active before any other node in the F2 layer because it receives the largest bottom-up input.
Once 05 becomes supraliminally active, 21 and 22 begin to decrease. Notice that 21 remains above 61,
while 22 decreases to a level below 61. This is a consequence of 01 receiving strong top-down input,
while 02 receives weak top-down input. When 02 becomes subliminally active, 2, starts increasing
due to the mismatch that is now occurring at the F1 layer. When 0, becomes supraliminally active it

11-470

0 0.001

Figure 2: (A) Node activities during the presentation of pattern 1'. (B) Node activities during the
presentation of pattern 12.

generates a reset wave that deactivates 05. After 05 becomes subliminally active, 01 and 02 receive only
bottom-up input, and their activities increase (see Figure 3B). Node 06 will become supraliminally
active next since it is the node in the F2 layer that receives the next largest bottom-up input. When
06 becomes supraliminally active, 21 and 22 begin to decrease; but they remain above b l . This is a
consequence of both 211 and 212 receiving bottom-up input and strong top-down input. Notice also that
x r continues to decrease after the deactivation of 05. Hence, 06 codes 13.

We now consider the slow learning case. First, I1 is presented at time t = 0, and the network
exhibits the behavior depicted in Figure 2A. However, in this case, soon after 215 wins the competition
in the F2 layer, I' is removed from the network inputs. Thus, the bottom-up and top-down LTM traces
are not allowed to converge to their limiting values. Pattern I' is presented until time t = 0.1, and
then I2 is presented. By time t = 0.3, all node activities have converged to their resting values of zero.
The behavior of the network during the presentation of I2 is similar to that shown in Figure 2B. The
major difference between the fast and slow learning cases demonstrated in these simulations occurs
when I3 is presented to the network at time t = 0.3 (see Figure 4). Node 05 receives the largest
bottom-up input, and it is activated prior to any other F2 layer node. This activation forces 21 and 5 2
to decrease to limiting values that remain above 61. In the slow learning case, the fact that 52 remains
above 61 while I3 is presented is a consequence of not allowing the top-down traces leading to 05 to
reach their limiting values during the presentation of I1. As a result, when 215 becomes supraliminally
active, 212, as well as 211, receive bottom-up input and strong top-down input. Thus, since both v1 and
v2 stay supraliminally active, v5 is not reset. Therefore, v5 codes 13.

4 Conclusions
A real-time neural network, AART1, that describes the dynamics of the ARTl model was presented.
This involved modifying the architecture of the ARTl network through the addition of a reset node
and a set of inhibitory nodes in the F2 layer. Along with modifications to the differential equations
describing the F1 and F2 layer nodes, theses changes embody the functionality of the orienting sub-
system in the ARTl model. In addition, the modifications described here allow the ARTl model to be
implemented solely using a set of concurrently executing nonlinear differential equations. Thus, the
AARTl network requires no external control features. Computer simulation results demonstrate the
efficacy of this network. In [3] we provide an analysis of the AARTl network that proves it is capable
of behaving in the same manner as the ARTl model. The modified equations presented in Section 2
have been successfully simulated for a variety of networks using a wide range of parameter values.

11-471

'1. '2

h +

> c -

+

L

I I
3.2w2 3.216

Tlmo

> c -

+

I I
3.2w2 3.216

Tlmo

(A) (B)
Figure 3: (A) Node activities leading to a reset during the presentation of pattern 13. (B) Node
activities after the reset during the presentation of pattern 13.

Figure 4: Node activities after the presentation of pattern 13, when pattern I1 has not been coded by
w5 on a previous pattern presentation.

References
[I] G. A. Carpenter. Neural network models for pattern recognition and associative memory. Neural

Networks, 2(4):243-257, 1989.

[a] G. A. Carpenter and S. Grossberg. A massively parallel architecture for a self-organizing neural
pattern recognition machine. Computer Vision, Graphics, and Image Processing, 37:54-115,1987.

[3] G. L. Heileman and M. Georgiopoulos. A real-time representation of the ART1 network. Technical
Report EECE 91-001, University of New Mexico, January 1991.

[4] R. P. Lippmann. An introduction to computing with neural nets. IEEE Acoustics Speech and
Signal Processing Magazine, 4(2):4-22, 1987.

11-472

